Entities ======== Redacted Header --------------- Throughout this text, unless otherwise specified, any polygon :math:`P \subseteq \mathbb{R}^{2}` is assumed to be simple and closed. We also assume all polygons have nonzero area. We define :math:`\mathcal{L}` to be a tuple :math:`\mathcal{L} := (L, \mathcal{E}, \mathcal{F})` where :math:`L \subseteq \mathbb{R}^{2}` is a polygon and :math:`\mathcal{E}` and :math:`\mathcal{F}` have the following properties: * :math:`\mathcal{E} := \{E_{1}, \cdots, E_{\sigma(\mathcal{E})}\}` where * :math:`\forall i, E_{i}` is closed, * :math:`\forall i, E_{i} \subseteq \partial{L}`, * :math:`i \neq j \implies E_{i} \cap E_{j} = \varnothing`. * :math:`\mathcal{F} := \{F_{1}, \cdots, F_{\sigma(\mathcal{F})}\}` where * :math:`\forall i, F_{i}` is closed, * :math:`\forall i, F_{i} \subseteq \partial{L}`, * :math:`i \neq j \implies F_{i} \cap F_{j} = \varnothing`. * :math:`\tilde{E} \cup \tilde{F} = \partial{L}` where :math:`\tilde{E} := \bigcup_{i} E_{i}` and :math:`\tilde{F} := \bigcup_{j} F_{j}`. * :math:`\forall i, j, |E_{i} \cap F_{j}| \in \mathbb{N}_{0}`. That is, each :math:`E_{i}` and :math:`F_{i}` is a closed connected curve that is a part of the boundary of :math:`L`. .. note:: Although the definitions of :math:`\mathcal{E}` and :math:`\mathcal{F}` are completely symmetric, and thus notation-wise interchangable, they are derived from some external information not relavent to this document. .. note:: Also, definition-wise, only one of :math:`\mathcal{E}` and :math:`\mathcal{F}` is necessary, but is included anyway for convenience of the following discourse. We also define an object associated with :math:`\mathcal{L}` to be any polygon :math:`M \subseteq L`. Finally, let :math:`w_{r}, w_{e} \in \mathbb{R}` be such that :math:`w_{r} \leq w_{e}`. .. warning:: The constraint that :math:`w_{r} \leq w_{e}` is an additional constraint for easing formalization, not a necessary condition enforced by any constraint. Now, define :math:`\mathcal{T}` as a tuple, with some abuse of notation, .. math:: \begin{align} \mathcal{T} := &~ (\mathcal{L}, \mathcal{M}, w_{r}, w_{e}) \\ = &~ (L, \mathcal{E}, \mathcal{F}, \mathcal{M}, w_{r}, w_{e}) \\ = &~ (L, E_{1}, \cdots, E_{\sigma(\mathcal{E})}, F_{1}, \cdots, F_{\sigma(\mathcal{F})}, M_{1}, \cdots, M_{\sigma(\mathcal{M})}, w_{r}, w_{e}), \end{align} where each :math:`M_{i}` is an object associated with :math:`\mathcal{L}`. As with :math:`\tilde{E}` and :math:`\tilde{F}`, we define :math:`\tilde{M} := \bigcup_{i} M_{i}`. Redacted Header --------------- Let :math:`\mathcal{T}, w_{r},` and :math:`w_{e}` be given. Let :math:`\rho_{r} := \frac{1}{2} w_{r}` and :math:`\rho_{e} := \frac{1}{2} w_{e}`. We define .. math:: \begin{align} \mathcal{R}(\mathcal{T}) := &~ L \backslash (N_{\rho_{r}}(\partial{L}) \cup N_{\rho_{r}}(\tilde{M})) \\ = &~ \{R_{1}, \cdots, R_{\sigma(\mathcal{R})}\} \end{align} where each :math:`R_{i}` is connected and :math:`i \neq j \implies R_{i} \cap R_{j} = \varnothing`. .. note:: It is possible for :math:`R_{i}` *not* to be simply connected. We also define .. math:: \mathcal{R}^{*}(\mathcal{T}) := \{R_{1}^{*}, \cdots, R_{\sigma(\mathcal{R})}^{*}\} where :math:`R_{i}^{*} := N_{\rho_{r}}(R_{i})` for each :math:`i`. .. note:: It is possible to have :math:`i \neq j` where :math:`R_{i}^{*} \cap R_{j}^{*} \neq \varnothing`. Similarly, we define .. math:: \begin{align} \mathcal{Q}(\mathcal{T}) := &~ \mathbb{R}^{2} \backslash (N_{\rho_{r}}(\tilde{F}) \cup N_{\rho_{r}}(\tilde{M})) \\ = &~ \{Q_{1}, \cdots, Q_{\sigma(\mathcal{Q})}\} \end{align} where each :math:`Q_{i}` is connected and :math:`i \neq j \implies Q_{i} \cap Q_{j} = \varnothing`. Finally, we also similarly define .. math:: \mathcal{Q}^{*}(\mathcal{T}) := \{Q_{1}^{*}, \cdots, Q_{\sigma(\mathcal{Q})}^{*}\} where :math:`Q_{i}^{*} := N_{\rho_{r}}(Q_{i})` for each :math:`i`. .. note:: By definition, we have .. math:: \forall i, \exists ! j ~\text{such that}~ R_{i} \subseteq Q_{j}. Since :math:`\mathcal{Q}` is pairwise disjoint, it follows .. math:: \forall i, \exists ! j ~\text{such that}~ R_{i} \cap Q_{j} \neq \varnothing. Since :math:`L` is bounded, :math:`\exists !\hat{Q} \in \{Q_{1}, \cdots, Q_{\sigma(\mathcal{Q})}\}` such that :math:`A(\hat{Q}) = \infty`. As long as the context is clear, we may simply denote these as :math:`\mathcal{R}, \mathcal{R}^{*}, \mathcal{Q},` and :math:`\mathcal{Q}^{*}`. .. attention:: **Note redacted.** Redacted Header --------------- We define :math:`\mathcal{P}` as a tuple of polygons :math:`\mathcal{P} := (S, C)`, where :math:`S \subseteq \mathbb{R}^{2}` and :math:`C \subseteq \mathbb{R}^{2}` of :math:`\mathcal{P}`. We say :math:`\mathcal{P}` is in :math:`\mathcal{T}` if :math:`S \in \mathcal{M}`.