Ground ====== Let :math:`\mathcal{T} = (\mathcal{L}, \mathcal{M}, w_{r}, w_{e})` where :math:`\mathcal{E} \neq \varnothing`. Given :math:`\mathcal{T}`, let :math:`\mathcal{T}' = (\mathcal{L}, \mathcal{M}', w_{r}, w_{e})` where .. math:: \mathcal{M}' := \{M'_{1}, \dots, M'_{\sigma(\mathcal{M}')}\} and .. math:: \tilde{M} \subseteq \tilde{M}'. Now let :math:`\mathcal{R}' := \{R'_{1}, \dots, R'_{\sigma(\mathcal{R}')}\}` and :math:`\mathcal{Q}' := \{Q'_{1}, \dots, Q'_{\sigma(\mathcal{Q}')}\}` be derived from :math:`\mathcal{T}'`. By definition, we have the following: * :math:`\forall i, \exists ! j` such that :math:`R'_{i} \subseteq R_{j}.` * :math:`\forall i, \exists ! j` such that :math:`Q'_{i} \subseteq Q_{j}.` Similarly, let :math:`\mathcal{V}'` and :math:`\mathcal{U}'` to be derived from :math:`\mathcal{T}'` respectively. Since :math:`\mathcal{V}' \cup \mathcal{U}' = \mathcal{R}'`, we get the following: * :math:`\forall i, \exists ! j` such that :math:`V'_{i} \subseteq R_{j}.` * :math:`\forall i, \exists ! j` such that :math:`U'_{i} \subseteq R_{j}.` Furthermore, we also have .. math:: \forall i, \exists ! j ~\text{such that}~ V'_{i} \subseteq V_{j}. .. note:: This is due to :math:`\hat{Q}' \subseteq \hat{Q}`. More specifically, for any :math:`i`, :math:`V'_{i} \in \mathcal{R}'` and :math:`V'_{i} \subseteq \hat{Q}'`. If we let :math:`V'_{i} = R'_{j}`, there is unique :math:`R_{k}` where :math:`R_{j} \subseteq R_{k}`. By definition of :math:`V'_{i}`, we have :math:`R'_{j} \subseteq \hat{Q}'`. It follows .. math:: R_{k} \cap \hat{Q}' \neq \varnothing \implies R_{k} \cap \hat{Q} \neq \varnothing \implies R_{k} \subseteq \hat{Q}. Hence, :math:`V_{l} = R_{k}` for some :math:`l` and :math:`V_{i} \subseteq V_{l}`. However, it is worthwhile to note that we do *not* have .. math:: \forall i, \exists ! j ~\text{such that}~ U'_{i} \subseteq U_{j}. In particular, it is possible to have :math:`U'_{i} \subseteq V_{j}` for some :math:`i` and :math:`j`. We denote this by .. math:: \begin{align} \mathcal{U}' := &~ \{U'_{1}, \dots, U'_{\sigma(\mathcal{U}')}\} \\ = &~ \mathcal{U}'_{\mathcal{V}} \cup \mathcal{U}'_{\mathcal{U}} \end{align} where .. math:: \begin{align} \mathcal{U}'_{\mathcal{V}} := &~ \{U'_{\mathcal{V}, 1}, \dots, U'_{\mathcal{V}, \sigma(\mathcal{U}'_{\mathcal{V}})}\} \\ \mathcal{U}'_{\mathcal{U}} := &~ \{U'_{\mathcal{U}, 1}, \dots, U'_{\mathcal{U}, \sigma(\mathcal{U}'_{\mathcal{V}})}\} \end{align} and .. math:: \begin{align} \mathcal{U}'_{\mathcal{V}} \subseteq &~ \mathcal{V} \\ \mathcal{U}'_{\mathcal{U}} \subseteq &~ \mathcal{U}. \end{align} .. note:: **Note redacted.**